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Abstract—Face recognition in the wild is now advancing
towards light-weight models, fast inference speed and resolution-
adapted capability. In this paper, we propose a bridge distillation
approach to turn a complex face model pretrained on private
high-resolution faces into a light-weight one for low-resolution
face recognition. In our approach, such a cross-dataset resolution-
adapted knowledge transfer problem is solved via two-step
distillation. In the first step, we conduct cross-dataset distillation
to transfer the prior knowledge from private high-resolution
faces to public high-resolution faces and generate compact and
discriminative features. In the second step, the resolution-adapted
distillation is conducted to further transfer the prior knowledge
to synthetic low-resolution faces via multi-task learning. By
learning low-resolution face representations and mimicking the
adapted high-resolution knowledge, a light-weight student model
can be constructed with high efficiency and promising accuracy
in recognizing low-resolution faces. Experimental results show
that the student model performs impressively in recognizing
low-resolution faces with only 0.21M parameters and 0.057MB
memory. Meanwhile, its speed reaches up to 14,705, 934 and 763
faces per second on GPU, CPU and mobile phone, respectively.

Index Terms—Face recognition in the wild, two-stream archi-
tecture, knowledge distillation, CNNs

I. INTRODUCTION

ALTHOUGH face recognition techniques become nearly
mature for several real-world applications, they still

have difficulties in handling low-resolution faces and being
deployed on low-end devices [1]. These demands are very
important for tasks like video surveillance and automatic
driving. In general, most well-known face recognition mod-
els [2]–[6] are trained from massive high-resolution faces by
using sophisticated architectures that contain huge parameters,
making them uneconomical to deploy. Moreover, these models
may be not suitable to directly apply on low-resolution sce-
narios due to the different distribution between high-resolution
training faces (sometimes from private datasets) and low-
resolution ones. An important reason is that the high-resolution
facial details will be missing during the degeneration of the
resolution, which the existing models largely depend on. An
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Fig. 1: Motivation of the bridge distillation. The direct knowl-
edge transfer from private high-resolution faces to target low-
resolution faces may be difficult. Therefore, we use public
high-resolution and low-resolution faces as a bridge to step-
wisely distil and compress the knowledge via cross-dataset
distillation and resolution-adapted distillation. Note that the
public low-resolution faces are generated from the public high-
resolution faces to simulate the probable distribution of target
low-resolution faces.

alternative way is to train a new model on massive low-
resolution faces in target scenarios (e.g., surveillance faces
in the wild). However, collecting and labeling such faces is
very time and labor consuming. Moreover, directly training
on low-resolution faces usually suffer from unsatisfactory
accuracy [7], since the reduction of image resolutions may
lose some valuable knowledge which can be provided from
some pretrained models [8]. Therefore, it is necessary to
fully exploit the knowledge from massive high-resolution
faces and pretrained models for facilitating low-resolution face
recognition. To recognize low-resolution faces, some feasible
ideas based on hallucination or embedding are proposed to
exploit high-resolution knowledge.

The “hallucination” idea is based on the fact that a person
who is familiar with a high-resolution face can recognize
the low-resolution counterpart. Several existing approaches
propose to hallucinate the high-resolution faces before recog-
nition by explicitly reconstructing details, such as e.g., with
super-resolution [9]–[12]. Among them, the mapping between
high-resolution to low-resolution faces is modeled by some
carefully designed parametric functions (e.g. nonlinear La-
grangian [13], SVD [9] and sparse representation [10]). During
inference, parametric coefficients that best fit the given low-
resolution faces are computed and adopted to recover the
missing details to make recognition easier. These approaches
generally can achieve good recognition accuracy, while the
additional reconstruction often brings in computational burden
and slows down the recognition speed.
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Different from the hallucination-based approaches, the “em-
bedding” idea applies an implicit scheme to directly project
low-resolution faces into an embedding space that mimics
high-resolution behaviors. In this way, only the high-resolution
features are encoded into the model without explicit recon-
struction. For example, Biswas et al. [14] embedded low-
resolution facial images into an Euclidean space, in which
image distances well approximate the dissimilarities among
high-resolution images. Ren et al. [15] projected face images
of different resolutions into a unified space for coupled match-
ing. A shared characteristic of such embedding models is to
encode informative high-resolution details into low-resolution
features via cross-resolution analysis. They are generally
model-specific and not designed to mimic an existing high-
resolution model whose pre-learned knowledge is not fully
adopted. However, the pre-learned knowledge often contains
rich high-resolution details and can guide low-resolution face
recognition if being properly adapted and transferred.

Knowledge distillation is an efficient way to transfer knowl-
edge via the teacher-student framework [16]–[21]. In the
framework, the teacher is usually a strong yet complex model
that performs well on its private dataset, while a much
simpler student is learned to mimic the teacher’s behavior,
leading to maximal performance preservation and speed im-
provement. The key of knowledge distillation is the trade-
off between speed and performance, and such a technique
provides an opportunity to convert many complex models
into simple ones for practical deployment. However, most
of existing distillation approaches assume that teacher and
student training are restricted on the same dataset or the same
resolution, which is not suitable in many real scenarios where
a well-pretrained teacher on an existing dataset would like
to be reused to supervise model training on a new dataset.
In [1], Ge et al.proposed a selective knowledge distillation
approach to transfer the most informative knowledge from pre-
trained high-resolution teacher to a lightweight low-resolution
student by solving a sparse graph problem, which actually
performed cross-resolution distillation so that the accuracy of
low-resolution face recognition can be improved. However,
the selected knowledge may not be optimal in adapting on the
training faces.

In summary, transferring the knowledge from high-
resolution to low-resolution models is helpful and can avoid
the computationally-intensive reconstruction. Thus, a learning
framework to help recognize low-resolution faces should be
able to effectively transfer informative high-resolution knowl-
edge in a principle manner. That is to say, It need to actually
solve two subproblems: what knowledge should be trans-
ferred from the high-resolution models and how to perform
such transfer. In this way, the challenges in low-resolution
face recognition and knowledge distillation are simultaneously
addressed with a single framework.

Inspired by that, as shown in Fig. 1, we propose a novel
bridge distillation approach that can convert existing high-
resolution models pretrained on their private datasets into a
much simpler one for low-resolution face recognition on target
dataset. In our approach, public high-resolution faces and their
resolution-degraded versions are used as a bridge to compress

a complex high-resolution teacher model to a much simpler
low-resolution student model via two step distillation. The first
cross-dataset distillation adapts the pretrained knowledge from
private to public high-resolution faces. It learns a feature map-
ping that preserves both the discriminative capability on public
high-resolution faces as well as the detailed face patterns
encoded in the original private knowledge. Then, the second
resolution-adapted distillation learns a student model in a
multi-task fashion to jointly mimic the adapted high-resolution
knowledge and recognize the public low-resolution faces,
which are synthesized to simulate the probable distribution of
the target low-resolution faces. In this way, the student model
only needs to be aware of the high-resolution details that are
still discriminative on low-resolution faces regardless of the
others, resulting into compact knowledge transfer.

The contributions are summarized as follows: 1) we propose
a bridge distillation framework that is able to convert high-
resolution face models to much simpler low-resolution ones
with greatly reduced computational and memory cost as well
as minimal performance drop; 2) we propose cross-dataset
distillation, which adapts the pre-learned knowledge from pri-
vate to public high-resolution faces that preserves the compact
and discriminative high-resolution details; 3) comprehensive
experiments are conducted and show that the student models
achieve comparable accuracy with the state-of-the-art high-
resolution face models, but with extremely low memory cost
and fast inference speed.

II. RELATED WORKS

In this section, we first briefly review the development
of low-resolution face recognition models, then introduce
knowledge distillation directions which are tightly correlated
with the proposed approach in greater details.

A. Low-Resolution Face Recognition

Recently, deep learning approaches have motivated many
strong face recognition models, e.g. [5], [6], [22]–[24]. How-
ever, the performance of these models may drop sharply if
applied to low-resolution faces. An important reason is that
the high-resolution facial details will be missing during the
degeneration of the resolution, which the existing models
largely depend on. To address this problem, several recent
works propose to adopt two ideas to handle low-resolution
recognition: hallucination and embedding, which reconstructs
the high-resolution details explicitly or implicitly during in-
ference.

In the hallucination category, high-resolution facial details
are explicitly inferred and then utilized in the recognition
process. For example, Kolouri et al. [13] proposed to fit
the low-resolution faces to a non-linear Lagrangian model,
which explicitly considers high-resolution facial appearance.
Jian et al. [9] and Yang et al. [10] instead adopted SVD and
sparse representation to jointly performing face hallucination
and recognition. Several works [25], [26] were able to gen-
erate highly realistic high-resolution face images from low-
resolution input. Cheng et al. [12] introduced a complement
super- resolution and identity joint deep learning method with
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a unified end-to-end network architecture to address low-
resolution face recognition. Although hallucination is a direct
way to address low-resolution face recognition, it is usually
computationally intensive as it introduces face reconstruction
as a necessary pipeline. Li et al. [27] introduced a GAN pre-
training approach and fully convolutional architecture to im-
prove face re-identification and employed supervised discrim-
inative learning to explore low-resolution face identification.
Recent face recognition models proposed designing effective
loss functions [5], [23], [28]–[31] for feature learning, that can
facilitate the hallucination-based approaches.

In contrary, the embedding category implicitly encodes
high-resolution features in low-resolution computation to
avoid high-resolution reconstruction. This inspires sever-
al embedding-based approaches, which project both high-
resolution and low-resolution faces into a unified feature space
so that they can be directly matched [32]–[34]. This paradigm
can be implemented by jointly transforming the features of
high-resolution and low-resolution faces into a unified space
using multidimensional scaling [35], joint sparse coding [36]
or cross-resolution feature extraction and fusion [37], [38].
Recently, deep learning were adopted for low-resolution face
recognition in [7] and [39]. However, most of these works
focus on joint high- and low-resolution training, while the
distillation of high-resolution models for low-resolution tasks
is still an open problem.

From these works, we find transferring the knowledge from
high-resolution to low-resolution models is helpful and can
avoid the computationally-intensive face reconstruction. Thus,
we need to actually solve two subproblems: what knowledge
should be transferred from the high-resolution models and how
to perform such transfer. Therefore, we also briefly review
knowledge distillation studies.

B. Knowledge Distillation and Transfer
Knowledge distillation [16] is a useful way that utilizes a

strong model to supervise a weak one, so that the weaker
model can be improved on the target task and carry out domain
adaptation [40]. In particular, the teacher-student framework
is actively studied [17], [18], [20], [41], [42], where the
teacher model is usually a strong yet complex model that
performs well on its private dataset. Knowledge distillation
will learn a new and much simpler student model to mimic
the teacher’s behavior under some constraints, leading to
maximal performance preservation and speed improvement.
In this manner, the learned student model can recover some
missing knowledge that may not be captured if it is trained
independently. Among them, Luo et al. [18] proposed to distil
a large teacher model to train a compact student network. In
their approach, the most relevant neurons for face recognition
were selected at the higher hidden layers for knowledge
transfer. Su and Maji [43] utilized cross quality distillation to
learn models for recognizing low-resolution images. Lopez-
Paz et al. [19] proposed the general distillation framework to
combine distillation and learning with privileged information.
There are some approaches that focus on the tasks of continue
or incremental learning. In [44], Rebuffi et al.introduced iCaR-
L, a class-incremental training strategy that allows learning

strong classifiers and a data representation simultaneously
by presenting a small number of classes and progressively
adding new classes. In [45], Li and Hoiem proposed Learning
without Forgetting method that uses only new task data to
train the network while preserving the original capabilities.
Typically, these continue or incremental learning approaches
are different from those feature extraction and fine-tuning
adaption techniques as well as multitask learning that uses
original task data.

To sum up, the core of knowledge distillation is the trade-
off between speed and performance, and such a technique
provides an opportunity to convert complex models into simple
ones that can be deployed in the wild. However, most of these
works assume that teacher and student training are restricted
on the same dataset or the same resolution. In many real
scenarios, we would like to reuse a well-pretrained teacher
model on an existing dataset to supervise model training
on a novel dataset, which cannot be directly handled by
existing approaches. Moreover, we attempt to use such a
learning framework to help recognize low-resolution faces,
since informative high-resolution knowledge can be effectively
transferred in a principle manner. In this way, the challenges
in low-resolution face recognition and knowledge distillation
are simultaneously addressed with a single framework.

III. THE PROPOSED APPROACH

A. Framework

Our bridge distillation approach is an intuitional and general
framework (see Fig. 2) to convert an existing high-resolution
model to a simpler one, which is expected to work well for
low-resolution recognition. The framework basically follows
the teacher-student framework [16] but with two-step distil-
lation. A complex teacher model is first trained on the high-
resolution face recognition task, then distilled to a simpler
student model for low-resolution scenario. The framework
refers to the following notations.

Domains. The framework involves three domains: 1) pri-
vate domain refers to an external high-resolution private face
dataset IP for training the teacher model, which is usually
large and unnecessary to be visible to the framework, 2) public
domain is the public face dataset IS and used as a bridge
to learn a simple student model by adapting and mimicking
the teacher’s knowledge, and 3) target domain refers to the
deployment scenario for recognizing unseen low-resolution
faces IT (e.g., surveillance faces). Without loss of generality,
we assume the face distribution in the target domain is
observable but the labels are not available.

Teacher model. In the proposed framework, the teacher
model is assumed to be off-the-shelf, meaning that it is
pretrained on IP . In general, the pretrained teacher model
encodes rich and general knowledge of high-resolution face
recognition. When applied to a novel dataset (e.g., IT ), it
is thus desirable to transfer the pre-learned high-resolution
knowledge across datasets rather than retraining the model
from scratch. Note that it differs from many teacher-student
frameworks [16]–[18], [20], [41], [42], where training is
restricted on the private dataset or the same resolution or
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Fig. 2: The bridge distillation framework, which consists of a teacher stream and a student stream. 1) The teacher stream
is first pre-trained on high-resolution private faces, which extracts the learned knowledge about informative facial details.
Then, cross-dataset distillation adapts the learned knowledge to the high-resolution public faces so as to preserve compact and
discriminative features. 2) The student stream is trained on low-resolution face recognition via resolution-adapted distillation
by jointly performing two tasks: feature regression to mimic the adapted high-resolution knowledge, and face classification on
low-resolution public faces. Thus, the resulting student models could be deployed to recognize low-resolution target faces.

available target dataset. In this work, we assume that the
teacher model Mt is in the form Mt = (Ft,St), composed
by a feature extraction backend Ft and a softmax classifi-
cation layer St. This is a widely applied architecture which
most face classification models (e.g. [5], [6]) conform. Thus,
given an input face image I, high-level features are first
computed with f t (I) = Ft

(
I;wf

t

)
, which are processed via

st(I) = St (f t (I) ;ws
t ) to obtain classification scores. Here,

wt =
[
wf

t ;w
s
t

]
denotes the model parameters. The design of

Ft and IT can be blind to the proposed approach.
Student model. The student model has much simpler design

than that of the teacher. By training the student to mimic
the teacher’s behavior on the public dataset IS , the model’s
complexity is largely reduced. In practical settings, our aim is
to obtain an optimized student model Ms that works well on
the low-resolution target dataset IT . Usually IS , IT and IP do
not share identities, i.e. IS ∩ IT = φ and IS ∩ IP = φ. The
difference in resolution also exists between private and target
datasets. Thus, the problem is how to properly transfer the
high-resolution knowledge well-learned from IP to facilitate
low-resolution recognition on IT by using IS . Such transfer
needs to address the distribution and resolution differences
simultaneously.

Formulation. Given the above settings, low-recognition
face recognition can be formulated as an open-set domain
adaptation problem [46] in cross-resolution context, where
the goal is to achieve effective knowledge transfer from the
discriminative high-resolution teacherMt (I;wt) to a simpler

low-resolution student Ms (I ′;ws), with huge domain shift
between the private dataset Ip and the target dataset It.
Here, the two datasets usually do not share identities, leading
to the difference in characteristics distribution. Moreover,
the extra resolution differences further adds to the domain
shift. Therefore, the knowledge transfer needs to address
the distribution and resolution differences simultaneously. To
this end, we introduce public source faces Is as bridging
domain and propose bridge distillation to perform transfer via
two step distillations: 1) cross-dataset distillation adapts the
pre-learned knowledge in high-resolution faces from private
domain to public domain and distils it to compact features,
and 2) resolution-adapted distillation transfers the knowledge
from high-resolution public faces to their low-resolution ver-
sions by taking the adapted features as supervision signals
to train the student model. In this context, Is could be easily
achieved from many public benchmarks, meanwhile many off-
the-shelf face recognition models are available and can serve
as teachers. Therefore, our approach provides an economical
way to learn an efficient model for facilitating low-resolution
face recognition.

B. Cross-dataset Distillation

Cross-dataset distillation addresses the subproblem that
what knowledge should be transferred from the high-
resolution models. It is used to compress and adapt the
teacher’s knowledge learned from Ip to Is with an adaptation
process which should take two considerations into account.
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First, it should preserve high-resolution knowledge learned
from Ip, while selectively enhancing them to be discriminative
on Is so that the correct high-resolution knowledge could
be extracted from Is with the teacher. Second, the adapted
features should be compact so that the student can mimic them
with extremely limited resources.

Previous works show that directly training on low-resolution
face images usually suffer from unsatisfactory recognition ac-
curacy [7]. The rationale of this degeneration is that important
face details gradually lose when image resolution reduces. To
mitigate this problem, high-resolution face knowledge should
be encoded into the trained model, so that detail reconstruction
can be implicitly performed during the recognition process.

In our setting, the teacher model Mt (I;wt) learned on
the rich high-resolution dataset IP is usually strong for rec-
ognizing high-resolution faces from its own dataset. Here
I represents the input high-resolution face image, and wt

is the concatenation of model parameters. We expect the
teacher’s knowledge can be transferred to the student model
Ms (I ′;ws), whose input is a low-resolution face image I ′
that comes from separate datasets IS or IT . However, we
assume that IS also contains high-resolution faces, so that
the teacher network can learn the high-resolution details. For
better clearness, we use the notation I and I ′ to represent
a high-resolution and low-resolution face image, respectively.
Given that IP and IS can have distinct distributions, we
propose to first adapt the teacher’s knowledge learned from IP
to IS . The adaptation process should take two considerations
into account. First, it should preserve the high-resolution
knowledge learned from IP , while selectively enhancing them
to be discriminative on the public dataset IS . Second, the
adapted features should be compact, so that the student
model can mimic them with extremely limited computational
resources.

To implement this idea, we instantiate the adaptation func-
tion as a small sub-network Fa

(
f t (I) ;wf

a

)
that maps the

high-dimensional features f t (I) into a reduced feature space.
By plugging this adaptation module into the teacher model,
optimal feature mapping can be learned in a data-driven
fashion. Given the adapted features fa (I) = Fa

(
f t (I) ;wf

a

)
,

we assume that a simple softmax classifier Sa (fa (I) ;ws
a)

recognizes the faces in the public dataset IS well. Denote
Ma = (Fa,Sa) as the full adaptation module, where wa =[
wf

a ;w
s
a

]
are its parameters to be learned. We propose to train

the adaptation module with the following objective, which can
be deemed as a variant of knowledge distillation [16], [19],

min
wa

C (wa, IS) + λD (wa, IS) . (1)

The proposed objective is a balanced sum of a classification
loss C and a distillation loss D, with λ as the balancing weight.
For classification on the high-resolution public faces, we have

C (wa, IS) =
∑
I∈IS

` (Ma (f t (I) ;wa) ,y (I)) , (2)

where we adopt the widely used cross-entropy classification
loss ` (·, ·), and y (I) is the one-hot groundtruth identity for
input image I. The distillation loss D enforces the adapted
features to mimic the original features’ behavior on face

classification. To this end, we first fine-tune the teacher’s
softmax layer on IS , obtaining Ŝt (f t (I) ; ŵs

t ), where ŵs
t

denotes the retrained layer weights. One can think of Ŝt as a
feature selector that preserves the discriminative components
of the originally learned knowledge for recognizing faces in
IS . Then the distillation loss is given as:

D (wa, IS) =
∑
I∈IS

` (Ma (f t (I) ;wa) , ŝ (I)) , (3)

where ŝ (I) = Ŝt
(
f t (I) ; ŵs

t

)
/T and T is the tempera-

ture [16] for softening the softmax outputs. Eq.3 uses cross-
entropy to approximate the softened teacher’s softmax fea-
tures, which ensures the adaptation process bringing in the
additional teacher’s knowledge learned from IP . In addition
to the recognition capacity regarding IS given by Eq.2, the
knowledge of the teacher network is retained. As a result, the
adapted features mimic the impact of the discriminative selec-
tion of the original high-resolution features, but with greatly
reduced dimensions. After training the adaptation moduleMa,
we discard the softmax layer and only retain the adapted and
reduced features fa (I) = Fa

(
f t (I) ;wf

a

)
as supervision for

training the student model.
Difference from Other Distillation Approaches. Different

from classic distillation approaches [16], [19], the proposed
bridge distillation approach goes through two steps of dis-
tillations: the first step adapts the pretrained complex model
to the public dataset, and the second step learns to mimic
it with a simpler model. As the first step distils the model
itself cross private and public datasets, we call the proposed
algorithm cross-dataset distillation. Thus, the teacher need not
to be fully trained on the public dataset. Directly retraining the
teacher on the public dataset not only costs a lot of time, but
may also overfit to the dataset and lose the previously learned
knowledge. By contrast, the proposed adaptation approach
preserves such information, and is much faster to train.

Difference from Other Learning Approaches. Recent
continue or incremental learning approaches [44], [45] focus
on using new task data to train the network while preserving
the knowledge learned from original task data. By contrast, our
setting of cross-dataset distillation mainly performs knowl-
edge adaptation rather than knowledge preservation such that
the teacher capacity can be transferred to public domain,
which can facilitate the knowledge alignment between high-
resolution and low-resolution instances. In this way, the ca-
pacity on high-resolution recognition can be preserved while
the adapted knowledge into public high-resolution dataset
can avoid being contaminated, leading to effective knowledge
transfer. We also note that our cross-dataset distillation com-
bines knowledge adaptation and knowledge transfer together,
which is carried out by fine-tuning and transfer learning.

C. Resolution-adapted Distillation

Resolution-adapted distillation addresses the subproblem
that how to perform knowledge transfer from high-
resolution faces to low-resolution ones. Given the high-
resolution knowledge adapted to the public dataset, we ask
the student to approximate them during inference. Since the
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capacity of the student is weak, the feature layer that mimics
the adapted knowledge should be sufficiently deep. Empirical-
ly, we find that the mimicking layer is best inserted before the
identity layer for softmax classification, as shown in Fig. 2.

Based on this design, we divideMs toMl
s andMh

s , i.e. the
lower and the higher part, and its parameters ws to wl

s and
wh

s accordingly. The lower part Ml
s corresponds to the main

feature branch till the mimicking layer, andMh
s consist of the

rest layers. The student model is trained using the following
objective

min
wh

s ,wl
s

Ĉ (ws, IS) +R
(
wl

s, IS
)
, (4)

where face classification and feature regression are combined
in a unified multi-task learning task. For the classification loss
Ĉ we still adopt the cross-entropy, but this time perform train-
ing on the degraded low-resolution versions of face images
from the public dataset IS :

Ĉ (ws, IS) =
∑
I∈IS

∑
I′∈D(I)

` (Ms (I ′;ws) ,y (I)) , (5)

where D (I) denotes the set of images degraded from I.
The regression loss R is defined as

R (ws, IS) =
∑
I∈IS

∑
I′∈D(I)

‖Ml
s

(
I ′;wl

s

)
−Fa (f t (I) ;wa) ‖2.

(6)
After training, the teacher model and the adaptation module
are discarded. During inference, the student model takes as
input a low-resolution face image and outputs its classified
identity features or labels, depending on the task.

D. Implementation Details

The proposed framework is designed to be flexible, so that
in principle the teacher model can take form of any models or
their ensemble as long as they end up with a softmax layer for
face classification. Note that many state-of-the-art models [2],
[5], [6], [47] meet this assumption. In this work, we adopt
two most recent architecture VGGFace2 [6], CosFace [5]
with a 112 × 112 input resolution and a 1024 embedding
feature dimension, and their ensemble in the teacher model for
example. VGGFace2 is pretrained on massive high-resolution
face images from the VGGFace2 dataset [6] and works at
resolution 224×224, while CosFace is pretrained on CASIA-
WebFace dataset [48] and a large-scale private dataset. No
retraining or fine-tuning is performed on these datasets during
evaluation. Also, we assume that their datasets are private, i.e.,
they cannot be accessed by the proposed approach.

For the student model, we design a light-weight architecture
similar to the ones proposed in [49], [50]. As shown in
Fig. 2, it takes as input a low-resolution face image. We train
the student model using various resolutions of p × p, where
p = {96, 64, 32, 16}. The architecture has ten convolutional
layers, three max pooling layers and three fully connected
layers, interleaved by ReLU non-linearities. Several 1 × 1
convolution layers are intersected between 3× 3 ones to save
storage and improve inference speed. Two skip connections are
established to enhance the information flow. Global average
pooling is used to make final prediction so that the architecture
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Fig. 3: The performance of the adapted models with and
without cross-dataset distillation on UMDFaces.

can handle arbitrary resolutions. With this architecture, the
amount of parameters is only 0.21M, which is only 0.81% or
0.57% of the teacher’s size (26M for VGGFace2 or 37M for
CosFace).

Our adaptation module takes the features before the teacher
model’s softmax layer as input. It has two fully connected
layers with 512 and 128 units, respectively. More complex
architecture can be used at the cost of additional training
time. All the weights in the student model and the adaptation
module are initialized via Xavier’s method. During training,
the student model is first pretrained on the low-resolution
faces in IS , then fine-tuned with the supervision adapted from
the high-resolution knowledge extracted by the teacher model.
Training images from IS are downsampled by different factors
to simulate degeneration at various levels. Batch normaliza-
tion is performed to accelerate convergence speed. We use
stochastic gradient descent to train the student models. In all
the experiments, the batch size and learning rate are set as 256
and 0.001, respectively.

IV. EXPERIMENTS

To validate the proposed approach, we conduct extensive
experiments on three challenging public benchmarks: UMD-
Faces [51] dataset, LFW (Labeled Faces in the Wild) [52]
dataset and UCCS (UnConstrained College Students) [53]
dataset, for different evaluation tasks.

UMDFaces serves as the public dataset IS , which contains
367, 888 images in 8, 419 subjects. To generate high-resolution
public images, faces are normalized into 224 × 224 and
112×112 sizes for learning the VGGFace2 and CosFace adap-
tation module. Low-resolution public face images are achieved
by randomly perturbing the localized facial landmarks for
16 times, normalizing to various resolutions of p × p and
degrading to approximate the distribution of target faces (e.g.,
blurring, changing illumination, etc). Among all these high-
and low-resolution images, 80% of them are randomly selected
for training and the rest for evaluating.

LFW is used for target dataset, where 6, 000 pairs (including
3, 000 positive and 3, 000 negative pairs) are selected to
evaluate various models on face verification task. To this end,
the images are resized according to the model input. We
extract the features from the mimicking layer and the identity
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Fig. 4: The face verification performance of various teacher and student models on LFW.

layer of the student model for each input pair. Cosine similarity
is computed for verification using a threshold. This experiment
aims to show that better supervision from the high-resolution
models can help generate better features in supervising the
training of student models.

UCCS contains 16, 149 images in 1, 732 subjects. It is a
very difficult dataset with various levels of challenges, includ-
ing blurred image, occluded appearance and bad illumination.
The identities in the training and testing datasets are exclusive.
It is widely used to benchmark face recognition models in
unconstrained scenario. Thus, on this dataset we compare
the proposed approach with the state-of-the-art models on
face identification task, following the standard top-K error
metric [54].

Generally, the high-resolution face images are available
from many public datasets (e.g., UMDFaces), which fulfills
the training of student models by transferring knowledge or
recognition ability from high-resolution public faces to low-
resolution ones synthesized according to the distribution of
target faces. As a result, the trained student models could
recognize low-resolution face images in the wild (even the
high-resolution images are not available in this case, such
as surveillance face images in UCCS). All the experiments
across this paper are conducted using a NVIDIA K80 GPU,
a single-core 2.6HZ Intel CPU and a mobile phone with
a Qualcomm Snapdragon 821 processor implemented with
TensorFlow framework [55].

A. Evaluating Adaptation on UMDFaces

In the first experiment, we aim to look into the improvement
brought by the proposed adaptation module via cross-dataset
distillation. To this end, we evaluate four cases: 1) No cross-
dataset distillation. In this case, the pretrained 2, 048 or 1, 024
dimensional features extracted by the VGGFace2 or CosFace
teacher model are directly used to supervise the student
model. 2) Direct feature compression without distillation. This
setting adapts the pre-learned teacher’s knowledge to the low-
resolution setting with classification loss only, but excludes
the distillation loss. 3) The proposed cross-dataset distillation,
which equals to the formula (1) that combines both losses.
4) Mixed-dataset distillation. In this case, we assume that the
private high-resolution dataset can be accessible and used for
training. In our experiment, we random select the training
instances in 1,000 subjects from private high-resolution dataset
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Fig. 5: ROC curves of various models on LFW.

(VGGFace2 dataset for VGGFace2 model or CASIA-WebFace
dataset for CosFace model) and combine it with UMDFaces
training set as a mixed training dataset, and then train a larger
9,419-way classifier to adapt the teacher knowledge into public
high-resolution dataset.

In the last three cases, features are reduced to 128 dimen-
sions by adaptation. Fig.3 shows the recognition accuracy of
these four cases on UMDFaces, indicating that feature com-
pression via cross-dataset distillation has a better performance
than direct compression. Moreover, performance only slightly
drops from case 1 to 3, especially cross-dataset distillation on
the ensemble of two teachers has a 0.15% drop against the
supervised student model by VGGFace2 without cross-dataset
distillation, while features are greatly reduced 128 dimensions,
thus greatly compressing the redundancy and saving resource
consumption. In addition, the trained classifier for mixed-
dataset distillation achieves the accuracies of 91.87% and
93.27% with VGGFace2 and CosFace models, respectively.
It shows that our cross-dataset distillation only has a very
small drop in accuracy without ensemble, while achieving an
accuracy improvement with ensemble. This implies that our
approach can perform effective knowledge adaptation even not
accessing the private dataset.



8

B. Evaluating Face Verification on LFW

In the second experiment, we extensively evaluate the
performance of the proposed approach on face verification
task under various input resolutions p = {96, 64, 32, 16},
supervision signals x = {c,s,dc,sc} and distilled teachers
T = {O,V,C,E}. Here, the abbreviations of supervision sig-
nals stand for only class-level supervision (c), cross-dataset
distillation when discarding class-level supervision (s), direct
distillation in addition to class-level supervision (dc) and
cross-dataset distillation in addition to class-level supervision
(sc), respectively. In the case of dc, the adaptation module
is discarded and the student model directly learns to mimic
the 2, 048 or 1, 024 dimensional pretrained features from the
teacher. The abbreviations of distilled teachers represent no
teacher (O), VGGFace2 (V), CosFace (C) and their ensemble
(E), respectively. In this context, a student model of a specific
setting is represented as the combination of its resolution,
supervision signal and distilled teacher, e.g., S-p-x-t where
p∈ p, x∈ x and t∈ T. For conciseness we represent a teacher
model with the same rule, e.g. T-112-sc-C represents the cross-
dataset distilled CosFace teacher model at 112×112 resolution
and adapted with the supervision signal sc. We also use T-224-
o-V and T-112-o-C to represent the original VGGFace2 and
CosFace teacher models without adaptation, respectively.

From Fig. 4, several important observations can be sum-
marized. First, the accuracy gradually degenerates as the
resolution decreases, which is as expected. Although S-96-sc-
{V,C,E} still perform worse than their teachers, they reach
a reasonably good accuracy (e.g.,92.67% with S-96-sc-E)
with a tiny model size of 0.21M parameters, indicating that
bridge distillation provides a way to redeploy existing heavy
models on resource-limited devices. Second, the student model
with only class-level supervision S-p-c-O perform consistently
worse than S-p-sc-{V,C,E}, where p∈ p. This implies that the
learned model without cross-dataset distillation may lack the
capability of capturing discriminative high-resolution details
due to direct training on low-resolution faces. On the contrary,
the student models can explicitly learn to reconstruct the
missing details by mimicking the high-resolution teacher’s
knowledge. Third, the student model distilled from the en-
semble outperforms its corresponding model distilled from
single teacher, revealing that transferring more informative
knowledge will result in better performance improvement.
Finally, to show the impact of cross-dataset distillation, we
compare each S-16-sc-t with its direct distillation model S-
16-dc-t, where t∈ {V,C}. The results show that combining
adaptation via cross-dataset distillation can boost the inference
performance. We further note that such improvement is consis-
tent across various resolutions and different distilled teachers.
Therefore, it is fair to conclude that the adaptive nature of
the proposed bridge distillation approach is necessary to learn
the discriminative characteristics. We suspect that introducing
the distillation loss to complement the classification loss can
prevent the training bias towards target domain much, leading
to less overfitting.

Moreover, the detail is shown in the Receiver Operating
characteristics Curves (ROC) on LFW (see Fig. 5). Compared

58.65

40.97

32.75
28.45 27.45

20.62 20.29

25.69
23.48 22.38

19.4 20.73
18.08

22.71 22.35

18.3

13.34 12.24

7.5
10.58

13.23 11.8
10.03 9.81 9.37 8.16

0

10

20

30

40

50

60

er
ro

r 
ra

te
 (

%
)

model

Top-1 Top-5

Fig. 6: The performance of various models in evaluating face
identification on UCCS.

with the other five models, our S-16-sc-E model achieves the
best performance. In particular, when the false positive rate is
10.0%, the true positive rate of S-16-sc-E is 80.4%, which is
9.6% higher than that of S-16-c-O, indicating the effectiveness
of our proposed bridge distillation approach under low false
positive rate.

C. Evaluating Face Identification on UCCS

In the final experiment, we make comparisons with the
state-of-the-art model on the low-resolution face identification
task using the challenging UCCS dataset. On this dataset, we
directly compare with the Very Low-Resolution Recognition
(VLRR) [7] and Selective Knowledge Distillation (SKD) [1],
which are two state-of-the-art low-resolution face recognition
models that work at resolution 16× 16.

We follow similar experimental settings, randomly dividing
the 180-subject subset into training set (4, 500 images) and
testing set (935 images), where face images are normalized to
16×16 and the identities in two sets are exclusive, fine-tuning
the softmax layers of various student models S-16-x-T on the
training set, and performing evaluation on the testing set. We
also fine-tune the teacher models T-224-c-V and T-112-c-C
without distillation on UCCS in a similar manner. Then, we
directly distil them to two baselines (Baseline-V and Baseline-
C). In addition, we train a new model S-16-n-O on UCCS from
scratch for comparison.

Fig.6 shows the results, where top-1 and top-5 error rates
are reported. We can find that the fine-tuned teachers T-
224-c-V and T-112-c-C as well as the distilled baselines
all perform significantly better than VLRR and SKD but
S-16-n-O is worse, implying that the models pretrained on
external datasets can provide valuable prior knowledge on
low-resolution recognition problem. Therefore, all the fine-
tuned students give much lower error rates than VLRR and
SKD while they have greatly reduced parameters comparing
with the fine-tuned teachers. Moreover, the fine-tuned student
models with cross-dataset distillation achieve best results. We
suspect that adapting the rich pretrained knowledge from
the well-learned teacher allows the student to successfully
reconstruct informative high-resolution details, even when the
input resolution is very low.
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TABLE I: The resource costs of various models. Our model
costs much less parameters and works at very low resolution.

Model Resolution #Para. FLOPs Year
DeepID [56] 39×31 17M 352M 2014

DeepID2 [22] 55×47 10M 194M 2014
MobileID [18] 55×47 2M 98M 2016

ShiftFaceNet [57] 224×224 0.78M 344M 2018
LRFRW [27] 64×64 4.2M 159M 2019

SKD [1] 16×16 0.79M 2.43M 2019
OUR 16×16 0.11M 1.51M -

TABLE II: Inference memory (MB) and speed (faces per
second). GPU: Nvidia K80, CPU: Intel 2.6GHZ, Mobile:
Snapdragon 821

Model Memory Speed
GPU CPU Mobile

T-224-o-V 35.41 27 0.01 1.72
T-112-o-C 18.86 483 5 3.6
S-96-sc-T 2.005 2,941 33 59
S-64-sc-T 0.892 5,000 81 121
S-32-sc-T 0.224 12,987 335 206
S-16-sc-T 0.057 14,705 934 763

D. Efficiency Analysis

The student can mimic the teacher’s performance while
largely reducing the cost in storage, memory and computation.

As shown in Table I, we compare with state-of-the-art light-
weight face models. DeepID [56] and DeepID2 [22] models
take low resolution inputs and ensemble tens of networks,
leading to large computation complexity. MobileID [18] com-
presses the DeepID2 model with fewer parameters of 2M,
which still needs 98M FLOPs. Recently, ShiftFaceNet [57]
applies a light-weight network with 0.79M parameters to
recognize 224 × 224 face images, thus still costs heavy
commutation burden. LRFRW [27] takes a low resolution
input of 64 × 64 and 4.2M parameters, but the FLOPs reach
159M. The most recent SKD [1] can recognize 16× 16 face
images while costing 0.79M parameters. Compared with them,
our student model only has much less parameters of 0.11M and
cost less computations, while working at very low resolution.

From Table II, we can find that the memory has a reduction
factor of 18×, 40×, 158× and 621× for the students at
resolution 96×96, 64×64, 32×32 and 16×16, respectively,
compared with VGGFace2 teacher, or 9×, 21×, 84× and
331× when compared with CosFace teacher. In particular, the
memory is only 0.057MB for the 16 × 16 student. Beyond
the significant saving in memory, the computational cost still
greatly reduces either. As shown in Table II, on a NVIDIA
K80 GPU, while the inference speed is only 27 or 483 faces
per second with the teacher model VGGFace2 or CosFace, it
reaches up to 2, 941, 5, 000, 12, 987 and 14, 705 with the S-p-
sc-t architecture, where t={V,C,E} and the resolution sizes p
are 96, 64, 32 and 16, respectively. Even in CPU, the inference
speed is also remarkably fast. In particular, when the models
are deployed on mobile devices, the inference time is only
1.31ms for the model S-16-sc-T. As a result, the proposed tiny
student model S-16-sc-T is able to process 14, 705, 934 or 763
faces per second on a GPU, CPU or a mobile phone. These

TABLE III: Face recognition performance (%) with naive
hallucination-based approaches. Here, a model is represented
as r-m where r and m denote the resolution of input faces and
hallucination method. BI: Bilinear interpolation, SR: Super
Resolution.

Recognizer LFW UCCS (Top1/Top5)
16-BI 16-SR 16-BI 16-SR

CenterLoss [58] 75.62 84.13 77.75/91.13 84.23/94.51
SphereFace [3] 76.62 85.62 78.73/86.20 80.85/87.75

CosFace [5] 84.33 86.07 91.83/96.76 94.08/97.61
VGGFace2 [6] 87.95 88.55 84.65/92.68 86.34/95.35
ArcFace [31] 86.30 86.97 88.73/95.77 90.56/96.48

Average 82.16 86.27 84.34/92.51 87.21/94.34

TABLE IV: Recognition accuracy (%) on LFW benchmark
with different face recognition losses in classification task.

Loss S-16-dc-V S-16-sc-V S-16-sc-C S-16-sc-E

CenterLoss [58] 80.90 84.37 85.12 85.15
SphereFace+ [30] 83.03 86.20 86.33 86.22

CosFace [5] 82.67 84.33 84.50 84.75
ArcFace [31] 82.88 85.62 85.00 85.73

Average 82.37 85.13 85.24 85.46

Baseline(Softmax) 82.38 83.95 85.50 85.88

results indicate that our bridge distillation approach provides a
practical solution to redeploy existing heavy pretrained models
on low-end devices.

E. Comparison Analysis

To further study the effectiveness of the proposed approach,
we conduct two experimental comparisons, including the
comparison with naive hallucination-based approaches and the
models with different face recognition losses.

First, we conduct the experimental comparison on naive
hallucination-based approaches on LFW and UCCS bench-
marks. In our experiment, we check two hallucination meth-
ods, BI (bilinear interpolation) and SR (a recent FSRNet
approach [59]), as well as five high-resolution face recogni-
tion models (CenterLoss [58], SphereFace [3], CosFace [5],
VGGFace2 [6] and ArcFace [31]). Note that these models
are provided by their authors with parameters pretrained on
specific datasets. The input face resolution is 16×16. Tab. III
shows the results. From the results, we can find that the
hallucination-based approaches generally can achieve good
recognition accuracy. For example, the average recognition
accuracy can reach 82.16% on LFW even using simply
bilinear interpolation to hallucinate face images. It is also
noted that complex hallucination method often leads to larger
performance improvement while costing more computational
burden in the reconstruction process. Moreover, SphereFace
performs worse than CosFace and ArcFace on UCCS, since it
is pretrained on CASIA-WebFace dataset [48] where the face
images have very different distribution from the surveillance
faces in UCCS. Our approach achieves comparable perfor-
mance while costing much less computational and memory
resources. For example, our S-16-sc-E student model gives an
accuracy of 85.88% on LFW and 91.84%@Top5 on UCCS.
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We next check the impact of different loss functions for clas-
sification task on recognition performance. Beyond the base-
line softmax loss, we conduct the experiments with four kinds
of face recognition losses (CenterLoss [58], SphereFace+ [30],
CosFace [5] and ArcFace [31]) on four student models. Tab. IV
shows the results, where our proposed approach has consistent
performance boost under various kinds of face recognition
losses when having better distillation losses. It implies that
our proposed approach is loss-agnostic.

V. CONCLUSION

This paper proposes a novel bridge distillation approach
to solve low-resolution face recognition tasks with limited
resources. The core of this approach is the efficient teacher-
student framework that relies on novel cross-dataset distilla-
tion and resolution-adapted distillation algorithms, which first
adapt the teacher model to preserve the discriminative high-
resolution details and then use them to supervise the training of
the student models. Extensive experimental results show that
the proposed approach is able to transfer informative high-
resolution knowledge from the teacher to the student, leading
to significantly reduced model with much fewer parameters
and extremely fast inference speed. In the future work, we will
explore the possibility of multi-bridge knowledge distillation
on extensive visual tasks.
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